
Integrating Software Assurance Knowledge into Conventional Curricula 1
ID: 1280-BSI | Version: 13 | Date: 2/28/11 2:55:35 PM

Integrating Software Assurance Knowledge into Conventional
Curricula
Nancy R. Mead, Software Engineering Institute [vita1]

Dan Shoemaker, University of Detroit Mercy [vita2]

Jeffrey A. Ingalsbe, Ford Motor Co. [vita3]

Copyright © 2011 Carnegie Mellon University and CrossTalk: The Journal of Defense Software Engineering

2011-02-15

One of our challenges is deciding how best to address software assurance in our university curricula. One
approach is to incorporate software assurance knowledge areas into conventional computing curricula. In
this article we discuss the results of a comparison of the Common Body of Knowledge for Secure Software
Assurance with traditional computing disciplines. The comparison indicates that software engineering is
probably the best fit for such knowledge areas, although there is overlap with other computing curricula as
well.

Defects Are Not an Option in Today’s World
Much of our national well-being depends on software. So the one thing that America’s citizens should be
able to expect is that that software will be free of bugs. Sadly, that is not the case. Instead, “commonly used
software engineering practices permit dangerous defects that let attackers compromise millions of computers
every year” [1]. That happens because “commercial software engineering lacks the rigorous controls needed
to [ensure defect free] products at acceptable cost” [1].

Most defects arise from programming or design flaws, and they do not have to be actively exploited to be
considered a threat [2, 3]. In fiscal terms, the exploitation of such defects costs the U.S. economy an average
of $60 billion dollars a year [4]. Worse, it is estimated that “in the future, the Nation may face even more
challenging problems as adversaries—both foreign and domestic—become increasingly sophisticated in their
ability to insert malicious code into critical software systems” [3].

Given that situation, the most important concern of all might be that the exploitation of a software flaw
in a basic infrastructure component such as power or communication could lead to a significant national
disaster [5]. The Critical Infrastructure Taskforce sums up the likelihood of just such an event: “The nation’s
economy is increasingly dependent on cyberspace. This has introduced unknown interdependencies and
single points of failure. A digital disaster strikes some enterprise every day, [and] infrastructure disruptions
have cascading impacts, multiplying their cyber and physical effects” [5].

Predictions such as this are what motivated the National Strategy to Secure Cyberspace, which mandates
the Department of Homeland Security (DHS) to “promulgate best practices and methodologies that promote
integrity, security, and reliability in software code development, including processes and procedures that
diminish the possibilities of erroneous code, malicious code, or trap doors that could be introduced during
development” [5].

Given the scope of that directive, one obvious solution is to ensure that secure software practices are
embedded in workforce education, training, and development programs nationwide. The problem is that
there is currently no authoritative point of reference to define what should be taught [3]. For that reason, in
2005 DHS created a working group to define a Common Body of Knowledge (CBK) for Secure Software
Assurance (which can be found at https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/95.html). The
goal of the CBK is to itemize all of the activities that might be involved in producing secure code. DHS does
not intend the CBK to be used as a general standard, directive, or policy [3]. Instead, its sole purpose is to

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/230-BSI.html (Mead, Nancy)
2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/689-BSI.html (Shoemaker, Dan)
3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/687-BSI.html (Ingalsbe, Jeff)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/230-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/689-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/687-BSI.html
https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/95.html

Integrating Software Assurance Knowledge into Conventional Curricula 2
ID: 1280-BSI | Version: 13 | Date: 2/28/11 2:55:35 PM

catalog secure practices that might be appropriate to currently existing academic disciplines. Thus the CBK
is an inventory of potential knowledge areas within each contributing discipline.

The CBK assumes that “software assurance is not a separate profession. What is not clear, however, is
the precise relationship between the elements of the CBK and the curricula of each potentially relevant
field” [6]. So, the challenge is to correctly integrate secure software assurance practices into each
contributing discipline [3, 6].

Several disciplines could conceivably benefit from a CBK, such as software engineering, systems
engineering, information systems security engineering, safety, security, testing, information assurance,
and project management [3]. Consequently, in order to ensure that the right content is taught in each, it
is necessary to understand the proper relationship between the CBK and the curricula of each relevant
discipline [6].

Finding Where the CBK Fits into Current Curricula
The overall goal of the CBK is to ensure adequate coverage of requisite knowledge areas in each
contributing discipline [3]. Accordingly, the working group sought to understand the exact relationship of
CBK elements to each traditional curriculum. Once that relationship was better understood, it was felt that
it should be possible to recommend the right way to incorporate CBK content into each of the established
disciplines.

That comparison was materially aided by the fact that the sponsoring societies of the three most influential
academic studies had just finished their own survey of curricular models for computing curricula. This
was reported in Computing Curricula 2005: The Overview Report, commonly called “CC2005” [7].
CC2005 merges the recommendations for the content and focus of Computer Engineering, Computer
Science, Information Systems, Information Technology, and Software Engineering curricula into a
single authoritative summary, which is fully endorsed by the ACM, the IEEE Computer Society, and the
Association for Information Systems.

CC2005 specifies 40 topic areas. These 40 topics represent the entire range of subject matter for all five
major computing disciplines. The report specifically states that “Each one of the five discipline-specific
curricula represents the best judgment of the relevant professional, scientific, and educational associations
and serves as a definition of what these degree programs should be and do [7].

In addition to the 40 topic areas, which in effect capture all of the knowledge requirements for computing
curricula along with a ranking of their relative emphasis in each specific discipline, CC2005 also summarizes
the expectations for the student after graduation [7]. This summary identifies 60 competencies that should be
expected for each graduate. By referencing those identified competency outcomes, it is relatively easy to see
the relationship between CBK knowledge elements and the CC2005 curricular requirements. It is also easier
to see the places where there is a misalignment between the CBK and each discipline’s curricular goals.

The CBK was mapped to the CC2005 recommendations for only three of the five disciplines. The two
disciplines at opposite ends of the CC2005 continuum, computer engineering and information technology,
were omitted because the former overlaps too much with electrical engineering and the latter overlaps too
much with business.

Because these three curricula (computer science, information systems, and software engineering) have
differing focuses, the content of CC2005 was examined one discipline at a time. First a topic-by-topic
analysis of depth of coverage was done. Depth of coverage was defined as “the quantity of material in
the CBK that provides specific advice about how to execute a given activity in CC2005 in a more secure
fashion.”

To obtain a metric, the assessment of “quantity of material” was based on a count of the textual references
in the CBK that could be associated with each of the 40 topics. The assumption was that the more references
to the topic in the CBK, the greater the importance of integrating secure software assurance content into the
teaching of that topic.

Integrating Software Assurance Knowledge into Conventional Curricula 3
ID: 1280-BSI | Version: 13 | Date: 2/28/11 2:55:35 PM

Knowledge Areas
All Disciplines

Cites Knowledge Areas
All Disciplines

Cites

Integrative
Programming
(integrated)

9 Analysis of
Requirements

1

Algorithms 1 Technical
Requirements
Analysis

274

Complexity 6 Engineering
Economics for SW

1

Architecture 150 Software Modeling
and Analysis

2

Operating Systems
Principles & Design

5 Software Design 255

Operating Systems
Configuration &
Use

5 Software V&V 401

Platform
Technologies

3 Software Evolution
(Maintenance)

438

Theory of
Programming
Languages

10 Software Process 296

Human-Computer
Interaction

5 Software Quality 163

Graphics and
Visualization

1

Information
Management (DB)
Practice

1 Non-Computing
Topics

Cites

Legal /
Professional /
Ethics / Society

93 Risk Management 86

Information
Systems
Development

7 Project
Management

156

Table 1: Degree to Which CC 2005 Knowledge Areas Are Reflected in the CBK

What Does This Mean?
Eight CC2005 topic areas had a significant degree of coverage in the CBK (> 100 references): (1)
Requirements, (2) Architecture, (3) Design, (4) Verification and Validation, (5) Evolution (e.g.,
Maintenance), (6) Processes, (7) Quality, and (8) Project Management. Three CC2005 topic areas
had moderate coverage in the CBK (< 100 but > 10): (1) Legal/Professional/Ethics/Society, (2) Risk
Management, and (3) Theory of Programming Languages.

This mapping shows that the main focus of the CBK is on generic software work rather than on the specific
curricular aspects that characterize the study itself, such as algorithms (for computer science), or IS

Integrating Software Assurance Knowledge into Conventional Curricula 4
ID: 1280-BSI | Version: 13 | Date: 2/28/11 2:55:35 PM

management (for information systems). That indicates that CBK content would be best integrated into the
places where the practical elements of the life cycle are introduced, such as a software design project course.

Fit Between the CBK and Desired Outcomes for the Profession
There were six priorities in CC 2005. These range from highest possible expectations through highest
expectations to moderate expectations, low expectations, little expectations, and no expectations. One of the
more interesting aspects of CC2005 is the 60 expected competencies. Because there is a difference in focus
for each discipline, there is a difference in what should be expected for each of them. For instance, there is a
different set of presumed competencies for a computer scientist than for a software engineer.

The 60 expected competencies were taken directly from the 40 learning topics. Each competency was
examined to determine which of the 40 topics could be assigned to it. For instance, if the competency was
to “design a user friendly interface,” there are 255 references in the CBK to “design” and 5 references in the
CBK to “human/computer interfaces.” So the number of CBK references for this outcome was assigned as
260. The following table summarizes this.

Computer Science

Highest Possible
Expectation (5)

Depth of Coverage Conclusion

Solve programming
problems (algorithms)

Analysis (274), Design (255) strong

High Expectation (4) Depth of Coverage Conclusion

Do large-scale
programming
(programming)

Analysis (274), Design (255), Architecture (150) strong

Develop new software
systems (programming)

Analysis (274), Design (255), Architecture (150) strong

Create a software user
interface (HCI)

HCI (5) weak

Moderate
Expectation (3)

Depth of Coverage Conclusion

Create safety-critical
systems (programming)

Analysis (274), Design (255), Architecture (150) strong

Process (296), V&V (401), PM (156)

Design information
systems (IS)

Analysis (274), Design (255), Architecture (150) strong

Implement information
systems (IS)

Process (296), V&V (401), PM (156) strong

Maintain and modify
information systems (IS)

Evolution (438) strong

Install/upgrade
computers (planning)

Process (296), V&V (401), PM (156) strong

Install/upgrade computer
software (planning)

Process (296), V&V (401), PM (156) strong

Design network
configuration (networks)

Analysis (274), Design (255), Architecture (150) strong

Integrating Software Assurance Knowledge into Conventional Curricula 5
ID: 1280-BSI | Version: 13 | Date: 2/28/11 2:55:35 PM

Manage computer
networks (networks)

Evolution (438) strong

Implement mobile
computing system
(networks)

Analysis (274), Design (255), Architecture (150) strong

Information Systems/IT

Highest Possible Expectation (5) Depth of Coverage Conclusion

Create a software user interface (IS) HCI (5) weak

Define information system requirements (IS) IS Dev. (7), Bus. Req.
(1), Analysis (274)

strong

Design information systems (IS) Design (255), Modeling
(5), Architecture (150)

strong

Maintain and modify information systems (IS) Evolution (438) strong

Model and design a database (DB) DB (1), Design (255) strong

Manage databases (DB) Evolution (438) strong

Develop corporate information plan (planning) Process (296) strong

Develop computer resource plan (planning) PM (156) strong

Schedule/budget resource upgrades (planning) PM (156) strong

Develop business solutions (integration) Bus. Req (1), Modeling
(5), Design (255)

strong

High Expectation (4) Depth of Coverage Conclusion

None n/a

Moderate Expectation (3) Depth of Coverage Conclusion

Develop new software systems (programming) Analysis (274), Design
(255), Architecture (150)

strong

Install/upgrade computer software (planning) PM (155) strong

Manage computer networks (networks) Evolution (238) strong

Manage communication resources (networks) PM (155), Economics (1) strong

Software Engineering

Highest Possible
Expectation (5)

Depth of Coverage Conclusion

Do large-scale
programming
(programming)

Analysis (274), Design (255), Architecture 150) strong

Develop new software
systems (programming)

Analysis (274), Design (255), Architecture (150) strong

Create safety-critical
systems (programming)

Analysis (274), Design (255), Architecture (150) strong

 (Continued from
previous line)

Process (296), V&V (401), PM (156) strong

Integrating Software Assurance Knowledge into Conventional Curricula 6
ID: 1280-BSI | Version: 13 | Date: 2/28/11 2:55:35 PM

Manage safety-critical
projects (programming)

V&V (401), PM (156), Evolution (438) strong

High Expectation (4) Depth of Coverage Conclusion

Develop new software
systems (programming)

Analysis (274), Design (255), Architecture (150) strong

Create a software user
interface (HCI)

HCI (5) weak

Define information
system requirements (IS)

IS Dev. (7), Bus. Req. (1), Analysis (274) strong

Moderate
Expectation (3)

Depth of Coverage Conclusion

Design a human-friendly
device (HCI)

HCI (5), Design (255) strong

Design information
systems (IS)

Design (255), Modeling (5), Architecture (150) strong

Maintain and modify
information systems (IS)

Evolution (438) strong

Install/upgrade
computers (planning)

Process (296), V&V (401), PM (156) strong

Install/upgrade computer
software (planning)

Process (296), V&V (401), PM (156) strong

Manage computer
networks (networks)

Evolution (438) strong

Implement mobile
computing system
(networks)

Analysis (274), Design (255), Architecture (150) strong

Table 2: Match Between CBK and CC2005 Expected Competencies for
Each Discipline; Degree of Disciplinary Expectations Addressed by the CBK

For Computer Science there is a weak match between the CBK and the “highest possible competency
expectations” in that only one of the eight outcomes (12.5%) had any degree of coverage. There is a slightly
better match for the high expectations category, three of ten (33.3%). However, there is an excellent match
with moderate expectations, nine of twelve (75%).

For Information Systems there is a reasonable match between the CBK and the “highest possible competency
expectations” in that nine of the twenty-two competencies (40.9%) specified for that discipline are covered.
There is no match for the high expectations category. However, there is a good match with moderate
expectations, five of nine (55.5%).

For Software Engineering there is a strong match between the CBK and the “highest possible set of
competency expectations” in that four of the seven outcomes (57.1%) are covered. There is reasonable match
for the high expectations category in that three of twelve competencies are covered (25%). There is also a
good match with moderate expectations in that five of nine areas are covered (55%).

Integrating the CBK into the World of Practical Education
One of the main inferences that can be drawn from this comparison is that the current CBK is less focused
on theory than it is on application of the knowledge in practice. In essence, the results demonstrate that the

Integrating Software Assurance Knowledge into Conventional Curricula 7
ID: 1280-BSI | Version: 13 | Date: 2/28/11 2:55:35 PM

CBK is built around and encapsulates knowledge about practical processes that are universally applicable to
securing software rather than on discipline-specific concepts, theories, or activities.

This is best illustrated by the matches themselves. Outcomes such as “solve programming problems,” “do
large scale programming,” and “design and develop new software and/or information systems” are high
priorities in all of the disciplines. At the same time, each of these also has a significant degree of coverage in
the CBK.

High priority items in each of these disciplines that were not good matches with the CBK tended to be
such competencies as “prove theoretical results (CS),” “develop proof-of-concept programs (CS),” “select
database products (IS),” “use spreadsheet features well (IS),” “do small scale programming (SE),” and
produce graphics or game software (SE).”

Others, such as “create a software user interface,” were a mixed bag, with a good match to Design but a poor
match to HCI.

So, while these competencies might be individually important to their specific disciplines, they are not
essential elements of secure software assurance as defined by the CBK. In view of that finding, it would
appear to be easier to introduce CBK content into curricula that are focused on teaching pragmatic software
processes and methods. And given its historic involvement with those areas, the discipline of software
engineering might be the place to start.

Therefore, one additional suggestion might be that a similar study should be done based strictly on Software
Engineering 2004, Curricular Guidelines for Undergraduate Programs in Software Engineering, particularly
Table 1: “Software Engineering Education Knowledge (SEEK) Knowledge Elements” [8]. That also itemizes
a set of “knowledge areas and knowledge units” that are similar in focus and purpose to the 40 knowledge
areas contained in CC2005. Thus it should be possible to better understand the actual relationship between
standard software engineering curricular content and the contents of the CBK through that comparison.

There is another distinct observation arising out of this study. Although the “moderate expectations”
category does not reflect priority areas, it is overwhelmingly the best aligned category for each discipline.
What that might indicate is that, although secure software assurance is a legitimate area of study for all
of these fields, it is not the highest priority in any of them. In terms of disciplinary implementations, the
practitioner orientation and the fact that security content is not the point of these fields indicates that courses
that cover practical life-cycle functions might be the place to introduce secure software assurance content
within any given discipline.

As a final note, the measurement process used in this study (e.g., a raw count) is inherently less accurate
than expert contextual analysis of the meaning of each knowledge element. Therefore, a more rigorous
comparison should be undertaken to better characterize the functional relationship between the items in
the CBK and the various curricular standards. This would be particularly justified for the study of software
engineering curricular content mentioned above. Once a means of comparison that everybody can agree on
is used, it should be relatively simple to work out the nuts-and-bolts of specific implementations within each
individual program.

References

1. President’s Information Technology Advisory
Committee. Cybersecurity: A Crisis of Prioritization.
Arlington: Executive Office of the President,
National Coordination Office for Information
Technology Research and Development, 2005.

2. Jones, Capers. Software Quality in 2005: A Survey
of the State of the Art. Marlborough: Software
Productivity Research, 2005.

Integrating Software Assurance Knowledge into Conventional Curricula 8
ID: 1280-BSI | Version: 13 | Date: 2/28/11 2:55:35 PM

3. Redwine, Samuel T., ed. Software Assurance:
A Guide to the Common Body of Knowledge to
Produce, Acquire and Sustain Secure Software,
Version 1.1. Washington: U.S. Department of
Homeland Security, 2006.

4. Newman, Michael. Software Errors Cost U.S.
Economy $59.5 Billion Annually. Gaithersburg:
National Institute of Standards and Technology
(NIST), 2002.

5. Clark, Richard A., and Howard A. Schmidt.
A National Strategy to Secure Cyberspace.
Washington: The President’s Critical Infrastructure
Protection Board, 2002. http://www.us-cert.gov/
reading_room/cyberspace_strategy.pdf

6. Shoemaker, D., A. Drommi, J. Ingalsbe, and N. R.
Mead. “A Comparison of the Software Assurance
Common Body of Knowledge to Common
Curricular Standards.” Dublin: 20th Conference on
Software Engineering Education & Training, 2007.

7. Joint Taskforce for Computing Curricula. Computing
Curricula 2005: The Overview Report. ACM/AIS/
IEEE, 2005.

8. Joint Taskforce for Computing Curricula. Software
Engineering 2004, Curricular Guidelines for
Undergraduate Programs in Software Engineering.
ACM/IEEE, 2004.

Carnegie Mellon University and CrossTalk
Copyright © Carnegie Mellon University and CrossTalk: The Journal of Defense Software Engineering

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

http://www.us-cert.gov/reading_room/cyberspace_strategy.pdf
http://www.us-cert.gov/reading_room/cyberspace_strategy.pdf
mailto:permission@sei.cmu.edu

